12 research outputs found

    Automatic segmentation of wall structures from cardiac images

    Get PDF
    One important topic in medical image analysis is segmenting wall structures from different cardiac medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). This task is typically done by radiologists either manually or semi-automatically, which is a very time-consuming process. To reduce the laborious human efforts, automatic methods have become popular in this research. In this thesis, features insensitive to data variations are explored to segment the ventricles from CT images and extract the left atrium from MR images. As applications, the segmentation results are used to facilitate cardiac disease analysis. Specifically, 1. An automatic method is proposed to extract the ventricles from CT images by integrating surface decomposition with contour evolution techniques. In particular, the ventricles are first identified on a surface extracted from patient-specific image data. Then, the contour evolution is employed to refine the identified ventricles. The proposed method is robust to variations of ventricle shapes, volume coverages, and image quality. 2. A variational region-growing method is proposed to segment the left atrium from MR images. Because of the localized property of this formulation, the proposed method is insensitive to data variabilities that are hard to handle by globalized methods. 3. In applications, a geometrical computational framework is proposed to estimate the myocardial mass at risk caused by stenoses. In addition, the segmentation of the left atrium is used to identify scars for MR images of post-ablation.PhDCommittee Chair: Yezzi, Anthony; Committee Co-Chair: Tannenbaum, Allen; Committee Member: Egerstedt, Magnus ; Committee Member: Fedele, Francesco ; Committee Member: Stillman, Arthur; Committee Member: Vela,Patrici

    A predictive model for the risk of sepsis within 30 days of admission in patients with traumatic brain injury in the intensive care unit: a retrospective analysis based on MIMIC-IV database

    No full text
    Abstract Purpose Traumatic brain injury (TBI) patients admitted to the intensive care unit (ICU) are at a high risk of infection and sepsis. However, there are few studies on predicting secondary sepsis in TBI patients in the ICU. This study aimed to build a prediction model for the risk of secondary sepsis in TBI patients in the ICU, and provide effective information for clinical diagnosis and treatment. Methods Using the MIMIC IV database version 2.0 (Medical Information Mart for Intensive Care IV), we searched data on TBI patients admitted to ICU and considered them as a study cohort. The extracted data included patient demographic information, laboratory indicators, complications, and other clinical data. The study cohort was divided into a training cohort and a validation cohort. In the training cohort, variables were screened by LASSO (Least absolute shrinkage and selection operator) regression and stepwise Logistic regression to assess the predictive ability of each feature on the incidence of patients. The screened variables were included in the final Logistic regression model. Finally, the decision curve, calibration curve, and receiver operating character (ROC) were used to test the performance of the model. Results Finally, a total of 1167 patients were included in the study, and these patients were randomly divided into the training (N = 817) and validation (N = 350) cohorts at a ratio of 7:3. In the training cohort, seven features were identified as key predictors of secondary sepsis in TBI patients in the ICU, including acute kidney injury (AKI), anemia, invasive ventilation, GCS (Glasgow Coma Scale) score, lactic acid, and blood calcium level, which were included in the final model. The areas under the ROC curve in the training cohort and the validation cohort were 0.756 and 0.711, respectively. The calibration curve and ROC curve show that the model has favorable predictive accuracy, while the decision curve shows that the model has favorable clinical benefits with good and robust predictive efficiency. Conclusion We have developed a nomogram model for predicting secondary sepsis in TBI patients admitted to the ICU, which can provide useful predictive information for clinical decision-making
    corecore